STRUCTURAL CALCULATIONS

PROJECT: SUGARHOUSE PARK - BIG FIELD SUGARHOUSE PARK SALT LAKE CITY, UT

> PROJECT NUMBER: 25-039

CLIENT: PLAYSPACE DESIGNS

DATE: 2/27/2025

BY: SAMUEL SPANN, PE

> APPROVED BY: RYAN HAZELWOOD, PE

HAZELWOOD ENGINEERING 331 S RIO GRANDE ST., STE. 160 SALT LAKE CITY, UT P: 801-810-5061

Date 2/27/2025

Project #: 25-039 Project: SUGARHOUSE PARK - BIG FIELD By: SAMUEL SPANN, PE

PROJECT INFORMATION

PROJECT DESCRIPTION

ADDRESS: SUGARHOUSE PARK SALT LAKE CITY, UT COUNTY: SALT LAKE LAT: 40.72

LONG: -111.85 ELEVATION: 4413

DESIGN CRITERIA

STRUCTURE TYPE: COMMERCIAL DESIGN CODE: 2021 IBC RISK CATEGORY: II

DESIGN LOADS

ROOF LOADS			SNOW LOADS		
DL	6	PSF	GROUND SNOW LOADS (P_g)	31	PSF
LLR	20	PSF			
			WIND LOADS		
THE LOAD	S SHOWN ON	THIS PAGE	WIND SPEED	105	MPH
ARE ONLY	USED TO REVI	EW PEMB	EXPOSURE	С	
FRAME	LOADS (IF SUF	PPLIED)			
		-	SEISMIC LOADS		
			Ss	1.39	g
			S1	0.52	g
			SITE CLASS	D (DEFAULT)

FOUNDATIONS FOR PAVILION

FOUNDATION CRITERIA

SOILS REPORT			
COMPANY	TERRAC	ON	
DATE	12/27/2	024	
NUMBER	612452	09	
ALLOWABLE BEARING PRESSURE	1400	PSF	
	1000	DOF	

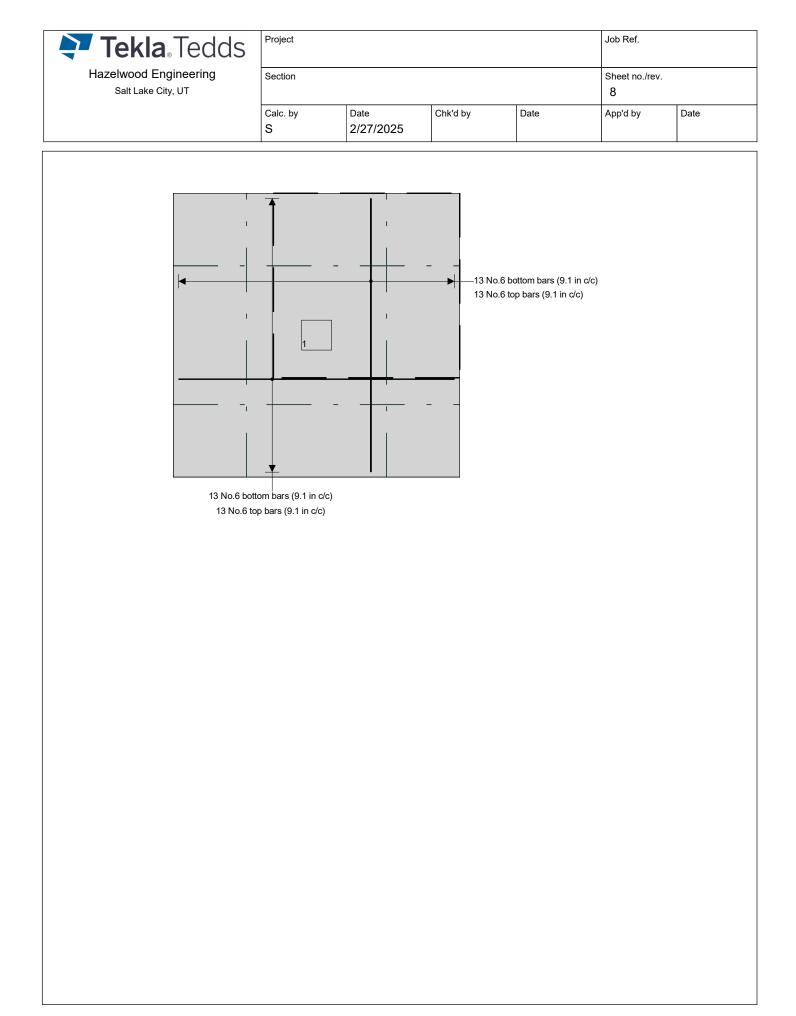
- 1/3 INCREASE FOR TEMPORARY LOADS: 1862 PSF PASSIVE PRESSURE 315 PSF
 - ACTIVE PRESSURE 45 PSF
 - AT REST PRESSURE 60 PSF
 - COEFFICIENT OF FRICTION (μ) 0.45

Tekla Tedds	Project								
Hazelwood Engineering Salt Lake City, UT	Section	ion Sheet no./rev.							
	Calc. by S	Date 2/27/2		ık'd by	Date	App'd by	Date		
FOOTING ANALYSIS									
In accordance with ACI318-14						Tedds calcul	ation version :		
Summary results									
Overall design status		PASS	-						
Overall design utilisation		0.791							
Description		Unit	Applied	Resisting	g FoS	Result			
Uplift verification		kips	35.9			Pass			
Overturning stability, x		kip_ft	109.07	-170.46	1.56	Pass			
Sliding stability, x		kips	8.2	16.1	1.969	Pass			
Description		Unit	Applied	Resisting	g Utilizatio	on Result			
Soil bearing		ksf	1.472	1.86	0.791	Pass			
Description		Unit	Required	Provided	Utilizatio	on Result			
Moment, positive, x-direction		kip_ft	81.8	564.1	0.145	Pass			
Moment, negative, x-direction		kip_ft	46.2	602.7	0.077	Pass			
Moment, positive, y-direction		kip_ft	1.5	544.8	0.003	Pass			
Shear, one-way, x-direction		kips	23.9	193.4	0.123	Pass			
Shear, one-way, y-direction		kips	0.4	187.0	0.002	Pass			
Min.area of reinf, bot., x-direction		in ²	5.335	5.720		Pass			
Min.area of reinf, top, x-direction		in ²	5.335	5.720		Pass			
Max.reinf.spacing, top, x-direction		in	18.0	9.1		Pass			
		in ²	5.335	5.720		Pass			
Min.area of reinf, bot., y-direction									

Length of footing Width of footing Footing area Depth of footing Depth of soil over footing Density of concrete

L_x = **9.5** ft L_y = **9.5** ft A = $L_x \times L_y$ = 90.25 ft² h = **26** in h_{soil} = **6** in γ_{conc} = **150.0** lb/ft³

Iekla. ledds					Job Ref.	
Hazelwood Engineering Salt Lake City, UT	Section	Sheet no./rev. 2	Sheet no./rev. 2			
	Calc. by S	Date 2/27/2025	Chk'd by	Date	App'd by	Date
Sait Lake City, UT Date Calc. by Date S 2/27/2025						
		_				
				1.472 ksf		
		1	+			
		<u> </u>				
у						
	X					
				1.472 ksf		
Column no.1 details						
Length of column						
•						
		yr erice m				
		Qallow Gross = 1	.86 ksf			
Density of soil						
Angle of internal friction		φ _b = 30.0 deg	9			
Design base friction angle		δ _{bb} = 24.2 de	g			
Coefficient of base friction		$tan(\delta_{bb}) = 0.4$	150			
Footing loads						
Self weight		F_{swt} = h $\times \gamma_{co}$	nc = 325 psf			
Soil weight		$F_{soil} = h_{soil} \times \gamma$	_{/soil} = 60 psf			
Column no.1 loads						
Dead load in z		F _{Dz1} = 1.2 kip				
Dead load in x		F _{Dx1} = 8.2 kip				
Dead load moment in x		M _{Dx1} = 91.3	kip_π			
Footing analysis for soil and sta						
Load combinations per ASCE 7-	16					
1.0D (0.791)						


Tekla ledds	Project				Job Ref.					
orce in x-axis orce in z-axis Ioments on footing Ioment in x-axis, about x is 0 Ioment in y-axis, about y is 0 Ioment in y	Section		Sheet no./rev 3	Sheet no./rev. 3						
	Calc. by S	Date 2/27/2025	Chk'd by	Date	App'd by	Date				
Forces on footing										
Force in x-axis		$F_{dx} = \gamma_D \times F_D$	a = 8.2 kips							
Force in z-axis		$F_{dz} = \gamma_D \times A >$	< (F _{swt} + F _{soil}) +	$\gamma_{D} \times (F_{Dz1} - I_{x1})$	$ imes$ I _{y1} $ imes$ h _{soil} $ imes$ γ _{soil})	= 35.9 kips				
Moments on footing										
Moment in x-axis, about x is 0		$M_{dx} = \gamma_D \times (A$	× (F _{swt} + F _{soil}) >	< L _x / 2) + γ _D ×	(((F _{Dz1} - I _{x1} × I _{y1} >	$(h_{soil} \times \gamma_{soil})$				
			× (h)) = 279.5	, ,		• //				
Moment in y-axis, about y is 0					(((F _{Dz1} - I _{x1} × I _{y1} >	$\langle h_{soil} \times \gamma_{soil})$				
		= 170.5 kip_1		, , ,		• //				
Uplift verification		• –								
Vertical force		F _{dz} = 35.886	kips							
	PASS - Footing is not subject to u									
Stability against overturning in a	direction.	moment about x i	slv		-	-				
Overturning moment		$M_{OTxL} = \gamma_D \times (M_{Dx1} + F_{Dx1} \times (h)) = 109.07 \text{ kip_ft}$								
-		$M_{RxL} = -1 \times (\gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_x / 2)) + \gamma_D \times (((F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil}) \times L_x / 2))$								
Resisting moment			_x)) = -170.46 ki							
Factor of safety		$abs(M_{RxL} / M_{OTxL}) = 1.563$								
		PASS - Overturning moment safety factor exceeds the minimum of								
Stability against sliding			U	•						
Resistance due to base friction		F _{RFriction} = ma	$x(F_{dz}, 0 \text{ kN}) \times t$	an(δ _{bb}) = 16.1	49 kips					
Stability against sliding in x dire	otion		(, ,	()	·					
Total sliding resistance		Fox = Formition	= 16.149 kips							
Factor of safety		$abs(F_{Rx} / F_{dx}) = 1.97$								
				actor of safe	ty exceeds the	minimum of				
Bearing resistance			U		•					
Eccentricity of base reaction										
Eccentricity of base reaction in x-a	ixis	ea, = Ma, / Fa	_z - L _x / 2 = 36.4	71 in						
Eccentricity of base reaction in y-a			z - L _y / 2 = 00.4 z - L _y / 2 = 0 in							
Length of bearing in x-axis			$3 \times (L_x / 2 - abs)$	s(e _{dx}))) = 61.5 8	88 in					
Pad base pressures				(,//)						
rau base pressures		q ₁ = 0 ksf								
		$q_2 = 0 \text{ ksf}$								
		q ₃ = 1.472 ks	sf							
		q ₄ = 1.472 ks								
Minimum base pressure		•	,q ₂ ,q ₃ ,q ₄) = 0 ks	sf						
Maximum base pressure		q _{max} = max(q	1,q2,q3,q4) = 1.4	172 ksf						
Allowable bearing capacity										
Allowable bearing capacity		$q_{allow} = q_{allow}$	Gross = 1.86 ksf							
		q _{max} / q _{allow} =								
		• •								

Tekla Tedds	Project		Job Ref.	JOD IVEI.			
Hazelwood Engineering Salt Lake City, UT	Section				Sheet no./rev 4		
	Calc. by S	Date 2/27/2025	Chk'd by	Date	App'd by	Date	
FOOTING DESIGN							
In accordance with ACI318-14					Tedds cal	culation version 3.	
Material details							
Compressive strength of concrete		f'₀ = 2500 psi					
Yield strength of reinforcement		f _y = 60000 ps					
Compression-controlled strain lim	t (21.2.2)	ε _{ty} = 0.00200					
Cover to top of footing		c _{nom_t} = 1.5 in	1				
Cover to side of footing		c _{nom_s} = 2 in					
Cover to bottom of footing		c _{nom_b} = 3 in	at				
Concrete type Concrete modification factor		Normal weigl λ = 1.00	าเ				
Column type		$\lambda = 1.00$ Concrete					
Analysis and design of concrete	footing	Concrete					
	-						
Load combinations per ASCE 7 1.4D (0.145)	-16						
Combination 1 results: 1.4D							
Forces on footing							
Ultimate force in x-axis		$F_{ux} = \gamma_D \times F_{Dx}$	1 = 11.5 kips				
Ultimate force in z-axis		$F_{uz} = \gamma_D \times A \times$	(F _{swt} + F _{soil}) +	γ _D × (F _{Dz1} - I _{x1} >	$ imes I_{y1} imes h_{soil} imes \gamma_{soil}$)	= 50.2 kips	
Moments on footing							
Ultimate moment in x-axis, about :	k is 0		× (F _{swt} + F _{soil}) > × (h)) = 391.3		((($F_{Dz1} - I_{x1} \times I_{y1} \times$	$(h_{soil} imes \gamma_{soil})) imes$	
Ultimate moment in y-axis, about	y is 0	M _{uy} = γ _D × (A = 238.6 kip_f		< L _y / 2) + γ _D × ((((F_{Dz1} - $I_{x1} \times I_{y1} \times$	$(h_{soil} imes \gamma_{soil})) imes$	
Eccentricity of base reaction							
Eccentricity of base reaction in x-a			z - L _x / 2 = 36.4	71 in			
Eccentricity of base reaction in y-a	axis		z - Ly / 2 = 0 in				
Length of bearing in x-axis		$L'_{xu} = min(L_x,$	$3 \times (L_x / 2 - abs)$	s(e _{ux}))) = 61.58	8 in		
Pad base pressures		.					
		q _{u1} = 0 ksf					
		q _{u2} = 0 ksf	of				
		q _{u3} = 2.061 k q _{u4} = 2.061 k					
Minimum ultimate base pressure		-	51 11,qu2,qu3,qu4) =	0 ksf			
Maximum ultimate base pressure]u1,qu2,qu3,qu4) =				
		Shear diagram,					
		Silvar alagraffi,	A avia (wha)		0		
0 0.0				(0		
0 0.0							

Tekla Tedds	Project				Job Ref.			
Hazelwood Engineering	Section				Sheet no./rev.			
Salt Lake City, UT					5			
	Calc. by S	Date 2/27/2025	Chk'd by	Date	App'd by	Date		
		Moment diagram		t)				
		81.8						
		-57.7						
0					0			
Ŭ								
		95						
Moment design, x direction, pos	itive mome							
Ultimate bending moment		$M_{u.x.max} = 81.$		- (-)				
Tension reinforcement provided			om bars (9.1 in	C/C)				
Area of tension reinforcement prov		$A_{sx.bot.prov} = 5$		225 in?				
Minimum area of reinforcement (8.	.0.1.1)	$A_{s.min} = 0.001$	$8 \times L_y \times h = 5.$ PASS - Area		ent provided exc	eeds minii		
Maximum spacing of reinforcemen	t (8.7.2.2)	s _{max} = min/2	× h, 18 in) = 1 8		Sin provided ext			
	. ,	ASS - Maximum p			spacing exceeds	actual spa		
Depth to tension reinforcement		-	- φ _{x.bot} / 2 = 22			•		
Depth of compression block		a = A _{sx.bot.prov}	imes f _y / (0.85 $ imes$ f'a	. × L _y) = 1.417	in			
Neutral axis factor		$\beta_1 = 0.85$						
Depth to neutral axis		$c = a / \beta_1 = c$	1.667 in					
Strain in tensile reinforcement		$\epsilon_t = 0.003 \times c$	d/c-0.003 = (0.03772				
Minimum tensile strain(8.3.3.1)		ε _{min} = 0.004 =	= 0.00400					
			PAS	S - Tensile st	rain exceeds min	nimum requ		
Nominal moment capacity		$M_n = A_{sx.bot.pro}$	$f_{y} \times f_{y} \times (d - a / d)$	2) = 626.816 k	<ip_ft< td=""><td></td></ip_ft<>			
Flexural strength reduction factor		$\phi_{f} = min(max)$	$(0.65 + 0.25 \times$	(ε _t - ε _{ty}) / (0.00	5 - ε _{ty}), 0.65), 0.9)	= 0.900		
Design moment capacity		$\phi M_n = \phi_f \times M_r$	= 564.134 kip	_ft				
		$M_{u.x.max}$ / ϕM_n	= 0.145					
		PASS	- Design mor	nent capacity	exceeds ultimat	e moment		
Moment design, x direction, neg	ative mome	nt						
Ultimate bending moment		$M_{u.x.min} = -46$	• =					
Tension reinforcement provided		13 No.6 top bars (9.1 in c/c)						
Area of tension reinforcement prov		A _{sx.top.prov} = 5.72 in ²						
Minimum area of reinforcement (8.	.6.1.1)	$A_{s.min} = 0.001$	$8 \times L_y \times h = 5.$		ont provided	oodo minin		
Maximum spacing of reinforcemen	t (8700)	$s_{\rm min} = \min/2$			ent provided exc	eeus miniñ		
maximum spacing of remoticemen	. ,	s _{max} = min(2 ASS - Maximum p	× h, 18 in) = 1 8 permissible re		spacing exceeds	actual ena		
Depth to tension reinforcement	E E	-	$-\phi_{x.top} / 2 = 24.$		Spacing exceeds	uotaai spa		
Depth of compression block			$\times f_y / (0.85 \times f_o)$		in			
Neutral axis factor		$\beta_1 = 0.85$, =y/ 11 -711				
Depth to neutral axis		$p_1 = 0.00$ c = a / $\beta_1 = 2$	1 667 in					
Strain in tensile reinforcement			d / c - 0.003 = () 04042				
Minimum tensile strain(8.3.3.1)		$\varepsilon_{min} = 0.004 =$	- 0.00400					

Tekla Tedds	roject				Job Ref.	
Hazelwood Engineering s Salt Lake City, UT	ection				Sheet no./rev.	
					6	
c S	alc. by	Date 2/27/2025	Chk'd by	Date	App'd by	Date
			PAS	S - Tensile stra	ain exceeds mi	nimum rec
Nominal moment capacity		Mn = A _{sx.top.pro}		2) = 669.716 ki		
Flexural strength reduction factor		φ _f = min(max(0.65 + 0.25 ×	(εt - εty) / (0.005	5 - ε _{ty}), 0.65), 0.9) = 0.900
Design moment capacity		$\phi M_n = \phi_f \times M_n$	= 602.744 kip	_ft		
		abs(M _{u.x.min}) /	φMn = 0.077			
		PASS	- Design mon	nent capacity	exceeds ultima	te momen
One-way shear design, x direction						
Ultimate shear force		V _{u.x} = 23.854	kips			
Depth to reinforcement			•	h - Cnom t - Oxtor	o / 2) = 22.625 in	
Shear strength reduction factor		φ _v = 0.75		<u>-</u>	,	
Nominal shear capacity (Eq. 22.5.5.1)			$(\mathbf{f}_{c} \times 1 \text{ psi}) \times \mathbf{I}$. _y × d _v = 257.92	25 kips	
Design shear capacity	1		= 193.444 kips		I =	
gir onour oupdony		$\psi v_n - \psi v_n < v_n$ V _{u.x} / $\phi V_n = 0$.		-		
				shqar canaci	ty exceeds ulti	mato shoa
	_		-	oncur oupuor		nate oneu
	5	Shear diagram, 0.8	y axis (kips)			
	0.4	0.0				
				C		
o						
		-0.8				
	Мс	oment diagram,	y axis (kip_ft)		
		1.5				
		I.				
0				C		
		1.9				
		1.9				
	ve moment	1.9				
Moment design, y direction, positiv Ultimate bending moment	ve moment	1.9 M _{u.y.max} = 1.5 1	7 kip_ft			
Moment design, y direction, positiv Ultimate bending moment	ve moment	M _{u.y.max} = 1.5 1	7 kip_ft m bars (9.1 in	c/c)		
Moment design, y direction, positiv		M _{u.y.max} = 1.5 1	m bars (9.1 in	c/c)		
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided	ed	M _{u.y.max} = 1.5 1 13 No.6 botto A _{sy.bot.prov} = 5.	m bars (9.1 in	·		
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide	ed	M _{u.y.max} = 1.5 1 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001	m bars (9.1 in 72 in ² 8 × L _x × h = 5.	335 in ²	ent provided ex	ceeds min
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide	ed I.1)	M _{u.y.max} = 1.5 1 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001	m bars (9.1 in 72 in ² 8 × L _x × h = 5.	335 in ² of reinforceme	ent provided ex	ceeds min
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide Minimum area of reinforcement (8.6.1	ed I.1) 3.7.2.2)	M _{u.y.max} = 1.5 1 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001 s _{max} = min(2 >	m bars (9.1 in 72 in ² 8 × L _x × h = 5.3 PASS - Area (< h, 18 in) = 18	335 in ² of reinforceme	ent provided exp pacing exceeds	
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide Minimum area of reinforcement (8.6.1	ed I.1) 3.7.2.2)	M _{u.y.max} = 1.5 1 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001 s _{max} = min(2 > 5 - Maximum p	m bars (9.1 in 72 in ² 8 × L _x × h = 5.3 PASS - Area (< h, 18 in) = 18	335 in ² of reinforceme in inforcement sj		
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide Minimum area of reinforcement (8.6.1 Maximum spacing of reinforcement (8	ed I.1) 3.7.2.2)	M _{u.y.max} = 1.5 4 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001 s _{max} = min(2 > 5 - Maximum p d = h - c _{nom_b}	m bars (9.1 in 72 in ² 8 × L _x × h = 5.3 PASS - Area o < h, 18 in) = 18 ermissible rei - \$\$,bot - \$\$y,bot / 2	335 in ² of reinforceme in inforcement sj	pacing exceeds	
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide Minimum area of reinforcement (8.6.1 Maximum spacing of reinforcement (8 Depth to tension reinforcement	ed I.1) 3.7.2.2)	$M_{u.y.max} = 1.51$ 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001 $s_{max} = min(2 > 5)$ 5 - Maximum p d = h - c_{nom_b} a = A _{sy.bot.prov}	m bars (9.1 in 72 in ² 8 × L _x × h = 5.3 PASS - Area o < h, 18 in) = 18 ermissible rei - \$\$,bot - \$\$y,bot / 2	335 in ² of reinforceme 3 in inforcement s ₁ 2 = 21.875 in	pacing exceeds	
Moment design, y direction, positiv Ultimate bending moment Tension reinforcement provided Area of tension reinforcement provide Minimum area of reinforcement (8.6.1 Maximum spacing of reinforcement (8 Depth to tension reinforcement Depth of compression block	ed I.1) 3.7.2.2)	M _{u.y.max} = 1.5 4 13 No.6 botto A _{sy.bot.prov} = 5. A _{s.min} = 0.001 s _{max} = min(2 > 5 - Maximum p d = h - c _{nom_b}	m bars (9.1 in 72 in ² 8 × L _x × h = 5.3 PASS - Area c < h, 18 in) = 18 ermissible rei - \$\phi_{x.bot} - \$\phi_y.bot} / 2 < fy / (0.85 × f_c	335 in ² of reinforceme 3 in inforcement s ₁ 2 = 21.875 in	pacing exceeds	

Hazelwood Engineering Salt Lake City, UT	Section				Sheet no./rev.		
Salt Lake City, UT Minimum tensile strain(8.3.3.1) Nominal moment capacity Flexural strength reduction factor Design moment capacity Dne-way shear design, y direction Different Shear strength reduction factor Shear strength reduction factor Nominal shear capacity (Eq. 22.5) Design shear capacity Two-way shear design at column	Secuon				7		
	Calc. by S	Date 2/27/2025	Chk'd by	Date	App'd by	Date	
Minimum tensile strain(8.3.3.1)		ε _{min} = 0.004 =		0 Tamaila at			
Nominal moment capacity		$M_{\rm e} = \Delta_{\rm ev}$	<i>₽</i> АЗ √× f _y × (d - a /		t rain exceeds mi	nımum req	
					05 - ε _{ty}), 0.65), 0.9) = 0.900	
-			= 544.829 kip		, o ciy), o.oo), o.o	, 0.000	
		Mu.y.max / ϕ Mn					
				nent capacity	/ exceeds ultima	te moment	
One-way shear design y directi	on						
		V _{u.y} = 0.408 k	lips				
Depth to reinforcement				_{v.bot} / 2,h - c _{nom}	$t - \Phi_{v,top} / 2) = 21.$	875 in	
		$d_{v} = \min(h - c_{nom_{b}} - \phi_{x,bot} - \phi_{y,bot} / 2, h - c_{nom_{t}} - \phi_{y,top} / 2) = 21.875 \text{ in}$ $\phi_{v} = 0.75$					
Nominal shear capacity (Eq. 22.5.5.1) Design shear capacity		$v'_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi}) \times L_x \times d_v} = 249.375 \text{ kips}$					
		$\phi V_n = \phi_v \times V_n =$ 187.031 kips					
		V _{u.y} / _∲ V _n = 0 .	-				
				n shear capao	city exceeds ulti	mate shear	
Two-way shear design at colum	in 1						
Depth to reinforcement		d _{v2} = 22.25 ir	1				
Shear perimeter length (22.6.4)		I _{xp} = 74.125 ii	า				
Shear perimeter width (22.6.4)		l _{yp} = 74.125 ii	า				
Shear perimeter (22.6.4)		$b_o = I_{x,perim} + I$	y,perim = 148.25	0 in			
Shear area		$A_{p} = I_{x,perim} \times I$	_{y,perim} = 5494.5	16 in²			
Surcharge loaded area		$A_{sur} = A_p - I_{x1}$	× I _{y1} = 5350.51	6 in ²			
Ultimate bearing pressure at center	er of shear area	q _{up.avg} = 2.57					
Ultimate shear load				soil × γ_{soil}) + γ_{D} ;	$\times A_{p} \times F_{swt} + \gamma_{D} \times N_{p}$	$A_{sur} imes F_{soil}$ -	
		× A _p = -76.15	6 kips				
Ultimate shear stress from vertica	lload	v _{ug} = max(F _{up}	₀ / (b₀ × d _{v2}),0 p	osi) = 0.000 ps	si		
Column geometry factor (Table 22	2.6.5.2)	$\beta = I_{y1} / I_{x1} = 1$.00				
Column location factor (22.6.5.3)		αs =20					
Concrete shear strength (22.6.5.2)		$(\beta) \times \lambda \times \sqrt{f'_c} \times$				
			,	,	= 250.084 psi		
		$v_{cpc} = 4 \times \lambda \times$	√(f' _c × 1 psi) =	200.000 psi			
			$, V_{cpb}, V_{cpc}) = 20$	0.000 psi			
Shear strength reduction factor		φ _v = 0.75					
Nominal shear stress capacity (Ec	- ,	v _n = v _{cp} = 200	•				
	.1.1(d))	$\phi V_n = \phi_v \times V_n =$	= 150.000 psi				
Design shear stress capacity (8.5.		v _{ug} / φv _n = 0.0	-				

